
DiSEqC Low Cost Antenna Tracker

Christian Monstein

The goal of this project was to design and manufacture an antenna tracker that could not only track the Sun, but

also other objects in the sky (Moon, satellites, etc.). Our main priority was to keep the cost as low as possible to

ensure everyone could build such a unit. The key components (and most expensive ones) are two DiSEqC [1]

compatible satellite rotors and an Arduino Micro [2] on a printed circuit board (PCB). The first DiSEqC-channel is

controlling azimuth or hour angle, depending on Python-application, while the second is controlling elevation or

declination, again depending on Python application. A single Arduino Micro controls the positioning of both.

Figures 1 and 2 show the completed unit and table 1 lists the specifications. Figures 3 and 4 and table 2 show the

schematic, basic PCB layout and parts list. Figure 5 shows how two azimuth rotors can be mounted to provide

azimuth and elevation.

For some latitudes it might be sufficient to track the Sun with a single azimuth-only rotor close by the path of

geostationary satellites, assuming the beam angle of the antenna covers at least 20°. In such a special case, the

satellite-rotor can be used like in television satellite applications. Figure 6 shows the solution at Glasgow

university in UK. Figures 7 and 8 show additional applications, and figure 9 shows a laptop running the tracking

program.

Fig. 1: Back panel of the DISEqC tracker with two F-
connectors for satellite rotors, USB-control port and
DC-input

Fig. 2: Front panel with power switch and LED

Table 1: Technical specifications of the DiSEqC controller Antenna Tracker

Attributes Value

DiSEqC rotors TechniSat, HH90, HH100 etc. or equivalent

DC supply 13 V - 18 V / 0.5 A min

Firmware/Application Arduino C / Python 2.7 or higher

Signal type DiSEqC 22 KHz

DiSEqC return None

Angular deflection Depending on rotor: +/- (62°…78°)

Angular resolution 1°

Current when idle 30 mA - 50 mA

Current when moving 200 mA - 350 mA

The cable connections are straightforward. We use a micro USB cable for the communication between the

Arduino and the PC or notebook. The TV satellite cables with F-connectors are for communications between the

controller and the satellite rotors. Any voltage between 13 and 18 volts works just fine. The higher the voltage

the faster the drive velocity. For calculations of azimuth/elevation or hour angle/declination, a simple Python

script is used which is executed every then and now, e.g. every 5 minutes to update the rotors position. Any

other language can be used as only simple ASCII commands need to be sent to the rotors.

Fig. 3: Schematic of the dual channel rotor controller, based on the Arduino Micro. Processor is powered via the USB cable.
The schematic and PCB layout are based on the TARGET 3001 PCB CAD program (link for downloading the file is provided
later).

Fig. 4: Print circuit board at approximately full
size. The dimensions are 100 mm x 53 mm, and
the Arduino Micro is in the center. The large,
black circular components are the coils L1 and L2.

Table 2: Parts list for one tracker unit with two channels

Qty Component Value Size Remark

1 PCB Dual layer 100 x 53 mm Beta Layout

1 Front plate anodized 110 x 54 x 1.5

1 Back plate anodized 110 x 54 x 1.5

4 R1, R2, R7, R8 4.7K 0603

2 R5, R11 100 0603

2 R6, R12 51 0603

2 R4, R10 1.2k 0805

1 Enclosure Aluminum 165 x 110 x 55 mm

1 Switch 1-pole 6mm Front panel

1 Power adapter 18V 1.33A With international adapters external

1 USB cable Black 1m external

2 C2, C5 54nF 0805

2 C3, C6 3.3uF 0805

2 L1, L2 1mH 1210

1 LED Red 8mm Front panel

1 Arduino Micro1 Micro_Shield_Rev3 Soldered to PCB

2 C1, C4 47µF / 25V SMD_R5X6_ELKO

2 IC1, IC2 LM741 SO8

2 D1, D2 SL1G SOD123 Protection

2 F1, F2 15V 1A USF1206

1 DC-socket Male 5.5/2.2mm 8mm Back panel

2 F-connector Female 9mm Back panel

1 Fixing plate PVC 112 mm x100 mm x 1 mm PCB fixation

2 K1, K2 Stecker SL-MTA/2.54/3POL

2 R3, R9 10K 0603

1 R_LED 2k2 Wired Use shrinking hose

Fig. 5: How to stack two SAT-rotors for an
Azimuth/Elevation drive system. The drive shafts
were replaced by individual adapters to provide a
two-axis system.

Fig. 6: How to install SAT-rotor for pseudo parallactic
mount with tracking in local hour angle only at fixed
declination. Declination is changed manually 2...4
times a year.

Fig. 7: S-band antenna with a satellite rotor on a
tripod tracking the Sun

Fig. 8: Simple rotor with a shaft extension made from
a piece of 1/2 inch water pipe. For demonstration a
small L-band antenna has been attached. This
configuration would also allow to point and track
geostationary satellites.

Fig. 9: Control notebook with Windows 7 and the rotor controller box. A Python script is called every 5 minutes by the
Splinterware System Scheduler program (ssfree.exe) and is commanding the rotor in figure 7 to the actual Sun position.

Software Installation

Required: Python 2.7 or higher, no guarantee for older versions

In case you need to improve or update Python script, I recommend Anaconda and Spyder [3]

1. Depending on your current configuration, install the following extra Python libraries:

pip install serial to update type: pip install --upgrade serial

pip install ephem to update type: pip install --upgrade ephem

pip install orbital to update type: pip install --upgrade orbital

2. Install Arduino IDE or at least the driver for Arduino from here: https://www.arduino.cc/en/main/software

3. Install system scheduler from here:

https://www.filecluster.com/downloads/System-Scheduler.html

Note: In a LINUX system you can use crontab which is similar to the Windows ssfree.exe

4. Edit parameter-array MyLocation according to your latitude, longitude, altitude, pressure and temperature.

For MaxRange check the specification of your satellite-rotor and for communication port check your device

manager devmgmt.msc

If you are neither happy with PYTHON nor with the system scheduler ssfree.exe, you can always send commands

to the rotor manually, based on a simple terminal program like PUTTY or WinSCP or HYPERTERMINAL or any

other script which allows access to serial ports.

Table 3: Commanding the DiSEqC controller. Angles less than 1° are automatically round to an integer value.

https://www.arduino.cc/en/main/software
https://www.filecluster.com/downloads/System-Scheduler.html

Function Command Example

Set azimuth or hour angle aziX azi55 <ENTER>

Set elevation or declination eleX ele-12 <ENTER>

Set maximum deflection maxX Max65 <ENTER>

Get a response (draft firmware) ? ? <ENTER>

Get firmware version (current firmware) -v -v <ENTER>

Get help (current firmware) -h -h <ENTER>

Communication parameter 9600 Baud, 8N1
no handshake

Installation, commissioning

Install the antenna pole in a vertical position as precise as possible, every error in tilt produces pointing error in

hour-angle, declination, elevation or azimuth. Adjust the rotors azimuth in exactly north-south direction using a

magnetic compass or even better find out when the Sun is in the meridian and adjust azimuth accordingly. Send

command azi0 to the controller, such that the rotor and antenna are pointing to south. Then you may adjust

rotor and antenna together in a way that the shadow of the front-dipole is exactly in the center of the antenna.

Change Python script back into original version and run it. Depending on your location and depending on

mechanical mounting method you may change the sign of hour-angle ha -> -ha

Example in Python for controlling azimuth/elevation

-*- coding: utf-8 -*-

"""

This script tracks the Sun in azimuth/elevation mode

Carefully check parameter in MyLocation

It is sufficient to execute this script once every 4...5 minutes

Created on Thu Sep 14 20:13:50 2017

@author: Monstein

"""

http://rhodesmill.org/pyephem/tutorial.html

http://rhodesmill.org/pyephem/quick#other-observer-methods

#--

import ephem

import serial

import datetime

import math

import numpy as np

#--

MyLocation = ephem.Observer()

MyLocation.lon = '8.7575' # east +°

MyLocation.lat = '47.205833' # north +°

MyLocation.elev = 414 # altitude in m asl

MyLocation.temp = 20 # °C

MyLocation.pressure = 900 # mbar

MaxRange = 75 # (+/- value) depends on your SAT-rotor type, check data sheet

MyComport = 'COM17' # check with device manager (C:\Windows\System32\devmgmt.msc)

#--

dt = datetime.datetime.now() # PC must run on UT or GPS-time

MyLocation.date = '{:4d}/{:02d}/{:02d} {:02d}:{:02d}:{:02d}'.format(

 dt.year,dt.month,dt.day,dt.hour,dt.minute,dt.second)

 #MyLocation.date = '2018/06/25 11:24:00' # example for testing at high noon

print 'Current date-time: ',MyLocation.date,' UT'

sun = ephem.Sun()

sun.compute(MyLocation)

azi = math.degrees(sun.az)

ele = math.degrees(sun.alt)

print("Sun data: Azimuth =%6.2f Elevation =%6.2f" % (azi-180.0,ele))

lst = MyLocation.sidereal_time()

ha = (lst - sun.ra)/math.pi*180.0

dec = math.degrees(sun.dec)

print("Sun data: Hourangle =%6.2f Declination =%6.2f" % (ha,dec))

myazi = azi - 180.0 # conversion 0° ... 360° -> +/- 180°

#--

if ((np.abs(myazi) < MaxRange) and (np.abs(ele) < MaxRange)):

 try:

 DiSEqC = serial.Serial(

 port = MyComport,

 baudrate = 9600,

 bytesize = serial.EIGHTBITS,

 parity = serial.PARITY_NONE,

 timeout = 2)

 if (DiSEqC.isOpen()):

 print "Successfully connected to antenna tracker at: "+DiSEqC.portstr

 cmd = 'max{:6.2f}\r'.format(MaxRange)

 DiSEqC.write(cmd) # set MaxRange

 cmd = 'azi{:6.2f}\r'.format(myazi)

 DiSEqC.write(cmd) # set azimuth or hour angle

 cmd = 'ele{:6.2f}\r'.format(ele)

 DiSEqC.write(cmd) # set elevation or declination

 DiSEqC.close()

 except IOError:

 DiSEqC.close()

 print "Problem communication with tracker. Check COM-port and cables/connectors!"

else:

 print 'Sun out of rotor-range of +/-',MaxRange

#--

The original script can be downloaded for free from here:

http://www.e-callisto.org/Hardware/Diseqc/sunpos_AZI_ELE.py

http://www.e-callisto.org/Hardware/Diseqc/sunpos_AZI_ELE.py

And a similar script to control a satellite rotor set in hour-angle / declination can be downloaded for free from

here:

http://www.e-callisto.org/Hardware/Diseqc/sunpos_HA_DEC.py

Design of the PCB in TARGET3001 can be downloaded from here (any students version of Target can be used to
get all relevant docs out of Diseq_V1.1.T3001):

http://www.e-callisto.org/Hardware/Diseqc/Diseq_V1.1.T3001

Additional information about the controller can be downloaded from here:

http://www.e-callisto.org/Hardware/Diseqc/Doku%20Diseq.pdf

Access to the Arduino firmware is available here:

http://e-callisto.org/Hardware/Diseqc/Easy_Diseq/Easy_Diseq.ino

References:

[1] DiSEqC: https://en.wikipedia.org/wiki/DiSEqC

[2] Arduino: https://www.arduino.cc/

[3] Anaconda/Spyder: https://www.anaconda.com/

Christian Monstein is a native of Switzerland and lives in Freienbach. He

obtained Electronics Engineer, B.S. degree at Konstanz University,

Germany. Christian is a SARA member and is licensed as amateur radio

operator, HB9SCT. He has 21 years of experience designing test systems

in the telecommunications industry and is proficient in several

programming languages including C++, IDL and PYTHON. He has worked

at ETH-Zürich on the design of a noise transmitter as payload on a

drone and is responsible for the hardware and software associated with

the e-CALLISTO Project. He plays also the role of a coordinator of

SetiLeague in Switzerland and he is also representing Switzerland within CRAF. He is a member of the ISWI steering

committee at UN office for outer space affairs in Vienna (UNOOSA) and has just been nominated as member of ITU. Email

contact: monstein(at)irsol.ch

http://www.e-callisto.org/Hardware/Diseqc/sunpos_HA_DEC.py
http://www.e-callisto.org/Hardware/Diseqc/Diseq_V1.1.T3001
http://www.e-callisto.org/Hardware/Diseqc/Doku%20Diseq.pdf
http://e-callisto.org/Hardware/Diseqc/Easy_Diseq/Easy_Diseq.ino
https://www.anaconda.com/

